CRACM/Orai ion channel expression and function in human lung mast cells
نویسندگان
چکیده
BACKGROUND Influx of extracellular Ca(2+) into human lung mast cells (HLMCs) is essential for the FcεRI-dependent release of preformed granule-derived mediators and newly synthesized autacoids and cytokines. However, the identity of the ion channels underlying this Ca(2+) influx is unknown. The recently discovered members of the CRACM/Orai ion channel family that carries the Ca(2+) release-activated Ca(2+) current are candidates. OBJECTIVES To investigate the expression and function of CRACM channels in HLMCs. METHODS CRACM mRNA, protein, and functional expression were examined in purified HLMCs and isolated human bronchus. RESULTS CRACM1, -2, and -3 mRNA transcripts and CRACM1 and -2 proteins were detectable in HLMCs. A CRACM-like current was detected following FcεRI-dependent HLMC activation and also in HLMCs dialyzed with 30 μM inositol triphosphate. The Ca(2+)-selective current obtained under both conditions was blocked by 10 μM La(3+) and Gd(3+), known blockers of CRACM channels, and 2 distinct and specific CRACM-channel blockers-GSK-7975A and Synta-66. Both blockers reduced FcεRI-dependent Ca(2+) influx, and 3 μM GSK-7975A and Synta-66 reduced the release of histamine, leukotriene C(4), and cytokines (IL-5/-8/-13 and TNFα) by up to 50%. Synta-66 also inhibited allergen-dependent bronchial smooth muscle contraction in ex vivo tissue. CONCLUSIONS The presence of CRACM channels, a CRACM-like current, and functional inhibition of HLMC Ca(2+) influx, mediator release, and allergen-induced bronchial smooth muscle contraction by CRACM-channel blockers supports a role for CRACM channels in FcεRI-dependent HLMC secretion. CRACM channels are therefore a potential therapeutic target in the treatment of asthma and related allergic diseases.
منابع مشابه
The Contribution of Orai(CRACM)1 and Orai(CRACM)2 Channels in Store-Operated Ca2+ Entry and Mediator Release in Human Lung Mast Cells
BACKGROUND The influx of extracellular Ca(2+) into mast cells is critical for the FcεR1-dependent release of preformed granule-derived mediators and newly synthesised autacoids and cytokines. The Orai(CRACM) ion channel family provide the major pathway through which this Ca(2+) influx occurs. However the individual role of each of the three members of the Orai channel family in Ca(2+) influx an...
متن کاملOrai and TRPC channel characterization in FcεRI‐mediated calcium signaling and mediator secretion in human mast cells
Inappropriate activation of mast cells via the FcεRI receptor leads to the release of inflammatory mediators and symptoms of allergic disease. Calcium influx is a critical regulator of mast cell signaling and is required for exocytosis of preformed mediators and for synthesis of eicosanoids, cytokines and chemokines. Studies in rodent and human mast cells have identified Orai calcium channels a...
متن کاملIon channel gene expression in human lung, skin, and cord blood-derived mast cells.
Immunoglobulin E (IgE)-dependent activation of human mast cells (HMC) is characterized by an influx of extracellular calcium (Ca(2+)), which is essential for subsequent release of preformed (granule-derived) mediators and newly generated autacoids and cytokines. In addition, flow of ions such as K(+) and Cl(-) is likely to play an important role in mast cell activation, proliferation, and chemo...
متن کاملOrai channel-mediated Ca signals in vascular and airway smooth muscle
Spinelli AM, Trebak M. Orai channel-mediated Ca signals in vascular and airway smooth muscle. Am J Physiol Cell Physiol 310: C402–C413, 2016. doi:10.1152/ajpcell.00355.2015.—Orai (Orai1, Orai2, and Orai3) proteins form a family of highly Ca -selective plasma membrane channels that are regulated by stromal-interacting molecules (STIM1 and STIM2); STIM proteins are Ca sensors located in the membr...
متن کاملOrai channel-mediated Ca2+ signals in vascular and airway smooth muscle.
Orai (Orai1, Orai2, and Orai3) proteins form a family of highly Ca(2+)-selective plasma membrane channels that are regulated by stromal-interacting molecules (STIM1 and STIM2); STIM proteins are Ca(2+) sensors located in the membrane of the endoplasmic reticulum. STIM and Orai proteins are expressed in vascular and airway smooth muscle and constitute the molecular components of the ubiquitous s...
متن کامل